TABLES TABLE 1 SOLID WASTE MANAGEMENT UNIT CHARACTERIZATION PPG INC. NATRIUM PLANT NEW MARTINSVILLE, WEST VIRGINIA | SOLID WASTE
MANAGEMENT
UNII | SIZE
(ft) | (1,000 ft ³) | DEPTH
(ft) | WASTE DESCRIPTION ^a | NOTESª | |-----------------------------------|--------------|--------------------------|---------------|---|---| | Marshall Plant Pond | 275 x 220 | 485 | -8 | Ferric chloride (FeCL₄) 2,760,000 pounds Chlorinated benzenes and tar Metals (Fe, Mn, Mg, Zn Cd, Cu, V, Cr) Tracifier waste Halogenated aliphatics Inorganic salts CCl₄ | Walls and bottom constructed of local clay Received waste from Chlor-alkali plant Chlorinated benzene plant Titanium tetrochloride plant Closure in 1979-80 six to eight-inch clay Includes concrete material under clay layer Ponds in area of silty clay soil | | Inorganics Waste
Pond | 225 x 140 | 190 | 6 | • BaCO ₃ • BaSO ₄ • Fe ₂ O ₃ • SiO ₂ | Walls and bottom of earthern material Received wastewater and sludge from barium oxide plant Closure in 1980, six to eightinch clay and soil Located near ground water divide produced by pumping (1985 data) Pond in area of suspected fill material | | Barium Waste
Landfill | 200 x 200 | 150 | -4 | • BaCO ₃ • BaSO ₄ • Fe ₂ O ₃ • SiO ₂ | Constructed of local top soil and clay Received solid wastes from barium plant Closure in 1980; six-inch soil cover | TABLE 1 (Continued) | SOLID WASTE
MANAGEMENT
UNIT | SIZE
(ft) | VOLUME (1,000 ft ³) | DEPTH
(ft) | | WASTE DESCRIPTION ^a | NOTESª | |-----------------------------------|--------------|---------------------------------|---------------|-----|--|---| | BHC Waste Pile | 75 x 150 | 50 | ~20 | • | Benzene hexachloride
isomers (a, b, q, BHC)
Chlorinated organic
solvents (trace) | Open waste pile on soil or fill Received waste product from BHC plant Material shipped off site in 1977 No formal closure | | Fly Ash Landfill | 300 x 1,800 | 4,725 | 711 | • | BaSO ₄
BaCO ₃
Fe ₂ O ₃
SiO ₂ | Constructed with clay bottom and dikes Received: Bottom ash prior to 1975 Fly and bottom ash since 1975 Progressive closure as areas become filled Periodic barium waste deposited in southern tracts Closure consists of six-inch soil and grass Landfill constructed in area of clay approximately 20 feet thick Scrap metal may be present | | Sanitary Landfill | 1,100 x 500 | 5,500 | - | • 0 | eneral trash and
rubbish
Demolition debris
Construction refuse | Constructed in sandy-clay loam material Three separate cells; two closed Class III nonchemical landfill | | Mercury Wastewater
Tanks | - | - | - | | lercuric sulfide
lercuric chloride | Consists of three tanks and treatment system Treatment results in insoluble ground mercuric sulfide which is disposed off site Mercury has been detected in nearby monitoring wells | ^dInformation based on 1985 and 1986 submittals by PPG to U.S. FPA. TABLE 2 MONITORING WELL AND GROUND WATER ELEVATIONS PPG, INC. NATRIUM CHEMICAL PLANT NEW MARTINSVILLE, WEST VIRGINIA | WELL
NO. | ELEVATION OF TOP OF PVC (ft above MSL) | DEPTH TO WATER
FROM TOP
OF PVC (ft)
(9-28-81) | DEPTH TO WATER
FROM TOP
OF PVC (ft)
(4-13-89) | WATER TABLE
ELEVATION
(9-28-81)
(ft above MSL) | WATER TABLE
ELEVATION
(4-13-89)
(ft above MSL) | |---------------|--|--|--|---|---| | MW-1 | 690.99 | 36.19 | 37.25 | 654.80 | 653.74 | | MW-2 | 687.44 | 77.17 | 72.96 | 610.27 | 614.48 | | MW-3 | 640.30 | 19.92 | NA | 620.38 | NA | | 4 | 637.16 | 17.53 | 18.42 | 619.63 | 618.74 | | MW-5 | 629.57 | 7.43 | 4.92 | 622.14 | 624.65 | | MW-6 | 646.89 | 36.16 | 33.71 | 610.73 | 613.18 | | MW-7 | 654.58 | 45.91 | 40.96 | 608.67 | 613.62 | | MW-8 | 657.86 | 48.85 | 44.04 | 609.01 | 613.82 | | MW-9 | 668.46 | 58.97 | 54.00 | 609.49 | 614.46 | | MW-10 | 673.59 | 63.71 | 58.88 | 609.85 | 614.71 | | MW-11 | 671.56 | 61.12 | 56.67 | 610.44 | 614.89 | | MW-12 | 673.02 | 62.08 | 57.92 | 610.94 | 615.10 | | MW-13 | 667.56 | 55.28 | 51.42 | 612.28 | 616.14 | | MW-14 | 649.10 | 36.00 | 32.71 | 613.10 | 616.39 | | 15 | 646.01 | 33.75 | 28.62 | 612.26 | 617.39 | | MW-16 | 640.18 | 27.75 | 24.20 | 612.43 | 615.98 | | MW-17 | 641.85 | 29.66 | 25.50 | 612.19 | 616.35 | | MW-18 | 641.87 | 28.36 | 25.23 | 613.51 | 616.64 | | MW-19 | 667.92 | 56.36 | 52.29 | 611.56 | 615.63 | | MW-30 | 657.42 | NA | 44.04 | NA | 613.38 | | MW-31 | 674.28 | NA | 60.54 | NA | 613.74 | | MW-32 | 658.86 | NA | 45.67 | NA | 613.19 | | MW-33 | 667.61 | NA | 54.08 | NA | 613.53 | | Ohio
River | NA | NA | NA | 624.00
(est.) | 620.10 | #### TABLE 3 PRODUCTION WELL PUMPING RATES APRIL 13, 1989 PPG, INC. ### NATRIUM CHEMICAL PLANT NEW MARTINSVILLE, WEST VIRGINIA | | , | |----------|-------------------------| | WELL NO. | PUMPIN
RATE
(gpm) | | 5 | 230 | | 18 | 310 | | 19 | 50 | | 28 | 110 | | 33 | ? | | 38 | 400 | | 41 | 110 | | 43 | 200 | | 50 | 220 | | 51 | 225 | | 53 | 220 | | 55 | 450 | | 57 | 375 | | 58 | 180 | | 59 | 440 | | NH3-1 | 400 | | NH3-2 | 300 | | NH3-3 | 200 | TABLE 4 WATER AND SOIL SAMPLE SUMMARY FOR EACH SWMU | | NO. OF | SAMPLES | | |--------------------------|--------|----------------|-------| | SWMU | | | TOTAL | | | WATER | SOIL | | | Marshall Plant Pond | 4 | _ | 4 | | Inorganics Waste Pond | 3 | , - | 3 | | Barium Waste Landfill | 4 | - | 4 | | BHC Waste Pile | 3 | - | 3 | | Fly Ash Landfill | 5 | - | 5 | | Sanitary Landfill | 2 | - | 2 | | Mercury Wastewater Tanks | 4 | 9 | 13 | | TOTALS | 25 | 9 | 34 | Note: For a list of specific analytical parameters for each SWMU, see Table 5. #### TABLE 5 # U.S. EPA-REQUESTED PARAMETERS FOR GROUND WATER ANALYSIS PPG, INC. NATRIUM PLANT NEW MARTINSVILLE, WEST VIRGINIA SWMU U.S. EPA-REQUESTED PARAMETERS Marshall Plant Pond Inorganics: Organics: Cd, As, Cr, Chloroform Methylene chloride Carbon tetrachloride Trichloroethane Benzene Trichloroethylene Tetrachloroethylene m-, p-, and o-dichlorobenzene Trichlorobenzene Benz(a)anthracene Benzo(b)fluoranthene Benzo(a)pyrene Chlorinated naphthalene Chlorobenzene Dibenz(a,h)anthracene 7,12-Dimethylbenz(a)anthracene 3-Methylcholanthrene Naphthalene Fluoranthene Inorganics Waste Pond Inorganics: Organics: As, Ba, Cr, Fe, Pb, Hg, Se Total organic carbon (TOC) Total organic halogen (TOX) Barium Waste Landfill Inorganics: Pb, Ba Organics: Total organic carbon (TOC) Benzene Pb Carbon tetrachloride BHC Waste Pile Inorganics: Organics: Chloroform Carbon tetrachloride trans-1,2-dichloroethylene Bromo dichloromethane Trichloroethylene Tetrachloroethylene Benzene ## TABLE 5 (Continued) SWMU U.S. EPA-REQUESTED PARAMETERS Fly Ash Landfill Inorganics: Ba, Fe, Sulfate Total alkalinity pH Sanitary Landfill Organics: Chloroform Methylene chloride Carbon tetrachloride Trichloroethane Benzene Trichloroethylene Tetrachloroethylene m-, p-, and 0-dichlorobenzene Mercury Wastewater Inorganics: Hga Tanks ^aSix soil samples collected from boreholes drilled for the installation of monitoring wells at this SWMU will also be analyzed for the presence of mercury. ## TABLE 6 ANALYTICAL DETECTION METHODS PARAMETER METHOD ## Ground Water #### Metals | Arsenic | U.S. EPA 206.2 | |----------------|-------------------------| | Barium | U.S. EPA 200.7 | | Cadmium | U.S. EPA 200.7 | | Lead | U.S. EPA 200.7 or 239.2 | | Mercury | U.S. EPA 245.1 | | Selenium | U.S. EPA 270.2 | | Total Chromium | SW846 7190 | | Iron | SW846 7380 | Total Metal Digestion CLP SOW 7/88 ## Organics | Volatiles | SW846 | 8240 | |---------------|-------|------| | Semivolatiles | SW846 | 8270 | ## General Chemistry | Sulfate | SW846 9038 | |------------|----------------| | TOC | SW846 9060 | | TOX | SW846 9020 | | Alkalinity | U.S. EPA 310.1 | ## Soils #### Metals | Arsenic | SW846 | 7060 | |---------|-------|------| | Mercury | SW846 | 7470 | TABLE 7 ANALYTICAL DETECTION LIMITS | PARAMETER | DETECTION LIMIT GROUND WATER (µg/2) ^a | DETECTION LIMIT
SOIL
(mg/kg) ^b | |---|--|---| | Arsenic
Barium
Cadmium | 10
200 | 1 | | Chromium
Lead | 5
10
5 | | | Mercury
Selenium | 0.2 | 1 | | Benzene
Carbon tetrachloride
Chlorobenzene | 5
5
5
5
5 | | | Chloroform
m-dichlorobenzene
p-dichlorobenzene | 5
10
10 | | | o-dichlorobenzene
Fluoranthene
Methylene chloride | 10
10
5 | | | Naphthalene
Trichlorobenzene | 10
10 | | | Trichloroethane Trichloroethylene Tetrachloroethylene | 5
5
5
5 | | | Trans-1,2-dichloroethylene
Bromo dichloromethane | 5 | | | Benz(a)anthracene Benzo(b)fluoranthene Benzo(a)pyrene | 10
10
10 | | | Chlorinated naphthalene
Dibenz(a,h)anthracene | 10
10 | | | 7,12-dimethylbenz(a)anthracene
3-methylcholanthrene | 10
10 | | $a_{\mu g/\ell}$ = Micrograms per liter or parts per billion. bmg/kg = Milligrams per kilogram or parts per million. #### TABLE 8 ## SIGNIFICANT POTENTIAL CONTAMINANTS ASSOCIATED WITH THE SOLID WASTE MANAGEMENT UNITS SITE CONTAMINANTS Marshall Plant Waste Pond Ferric Chloride Chlorobenzene o,m,p-Dichlorobenzene Trichlorobenzene Benzene Chloroform Carbon tetrachloride Methylene chloride Trichloroethylene Tetrachloroethylene Tetrachloroethane Vanadium Cadmium Chromium Lead BHC Waste Pile Benzene hexachloride isomers Lindane (gamma-benzene hexachloride) Benzene Chlorobenzene o,m,p-Dichlorobenzene Chloroform Carbon tetrachloride Perchloroethylene Trichloroethylene Mercury Wastewater Tanks Mercury - elemental Mercuric sulfide Mercuric chloride Barium Waste Pond Barium carbonate Barium sulfate Inorganics Waste Pond Barium carbonate Barium sulfate Fly Ash Landfill Barium carbonate Barium sulfate Sanitary Landfill Methane TABLE 9 VOLATILE ORGANIC COMPOUNDS AND DRAEGER INDICATOR TUBES | COMPOUND | ACIGH
TLV
(ppm) | DRAEGER TUBE
TO BE
USED | |----------------------|-----------------------|-------------------------------| | - | | | | Benzene | 1ª | Benzene 0.5/a | | Carbon tetrachloride | 5 | Carbon tetrachloride 5/c | | Chlorobenzene | 75 | Chlorobenzene 5/a | | Chloroform | 10 | Chloroform 2/a | | o-Dichlorobenzene | 50 | Chlorobenzene 5/a | | p-Dichlorobenzene | 75 | Chlorobenzene 5/a | | Methylene chloride | 50 | Methylene chloride 100/a | | Tetrachloroethylene | 50 | Trichloroethylene 2/a | | 1,1,1-Trichoroethane | 350 | Trichloroethylene 2/a | | Trichloroethylene | 50 | Trichloroethylene 2/a | | Trichlorobenzene | 5 | Chlorobenzene 5/a | $^{^{}m a}{ m OSHA}$ Permissible Exposure Limit. **FIGURES** ## **VISUAL CLASSIFICATION OF SOILS** | | CINUN | MBER: | | PROJECT NAME: | | | | | | |------------|----------------------|--|-----------------|---------------|---------|-------------|----------------------------------|-------|-----------| | BORIN | G NUME | STREET, STREET | | COORDINATES: | | | | DATE: | | | ELEVATION: | | GWL: Depth | Date/Ti | me | | | TARTED: | | | | | | OLOGIS | т: | Depth | Date/Ti | | | | OMPLETED: | | | NG MET | | | | | | | PAGE | OF | | | | | | | | T | | | | | DEPTH (| SAMPLE
TYPE & NO. | BLOWS ON
SAMPLER PER ' | RECOVERY
() | DESCRIPTION | | USCS SYMBOL | MEASURED
CONSISTENCY
(TSF) | WELL | REMARKS | | OTES | | | | | | | | | | #### FIGURE 4 #### CONSISTENCY OF COHESIVE SOILS | CONSISTENCY | UNCONFINED COMPRESSIVE
STRENGTH (TONS PER SQUARE FOOT)
LESS THAN 0.25 | | | | | |--------------|---|--|--|--|--| | VERY SOFT | | | | | | | SOFT | 0.25 to 0.50 | | | | | | MEDIUM STIFF | 0.50 to 1.0 | | | | | | STIFF | 1.0 TO 2.0 | | | | | | VERY STIFF | 2.0 TO 4.0 | | | | | | HARD | MORE THAN 4.0 | | | | | #### DENSITY OF GRANULAR SOILS | DENSITY | STANDARD
PENETRATION
RESISTANCE® | |--------------|--| | VERY LOOSE | 0 - 4 | | LOOSE | 5 - 10 | | MEDIUM DENSE | 11 - 30 | | DENSE | 31 - 50 | | VERY DENSE | OVER 50 | (1) STANDARD PENETRATION RESISTANCE IS THE NUMBER OF BLOWS REQUIRED TO DRIVE A 2-INCH O.D. SPLIT BARREL SAMPLER 12 INCHES USING A 140-POUND HAMMER FALLING FREELY THROUGH 30 INCHES. THE SAMPLER IS DRIVEN 18 INCHES AND THE NUMBER OF BLOWS RECORDED FOR EACH 6-INCH INTERVAL. THE SUMMATION OF THE FINAL TWO INTERVALS IS THE STANDARD PENETRATION RESISTANCE. 1000. 100 10. 10 01 001 00001 00001 #### GRAIN SIZE IN MM | COBBLES | GRAVEL | | | SAND | | | |---------|--------|------|--------|--------|------|---------------| | | COARSE | FINE | COARSE | MEDIUM | FINE | SILT AND CLAY | #### USCS CLASSIFICATION FOR SOILS #### COARSE-GRAINED SOILS | | - | NAME OF TAXABLE PROPERTY O | |----------------------------------|----|--| | CLEAN GRAVELS | GW | WELL-GRADED GRAVELS,
GRAVEL-SAND MIXTURES,
LITTLE OR NO FINES | | (LITTLE OR NO FINES) | GP | POORLY-GRADED GRAVELS,
GRAVEL-SAND MIXTURES,
LITTLE OR NO FINES | | GRAVELS
WITH FINES | GM | SILTY GRAVELS,
GRAVEL-SAND-SILT MIXTURES | | (APPRECIABLE AMOUNT
OF FINES) | GC | CLAYEY GRAVELS
GRAVEL-SAND-CLAY MIXTURES | | CLEAN SANDS | SW | WELL-GRADED SANDS,
GRAVELLY SANDS,
LITTLE OR NO FINES | | LITTLE OR NO FINES) | SP | POORLY-GRADED SANDS,
GRAVELLY SANDS,
LITTLE OR NO FINES | | SANDS
WITH FINES | SM | SILTY SANDS,
SAND-SILT MIXTURES | | (APPRECIABLE AMOUNT
OF FINES) | SC | CLAYEY SANDS,
SAND—CLAY MIXTURES | #### FINE GRAINED/HIGHLY ORGANIC SOILS | SILTS
AND CLAYS
LIQUID LIMIT
(LESS THAN 50) | ML | INORGANIC SILTS AND VERY
FINE SANDS. ROCK FLOUR. SILTY
OR CLAYEY FINE SANDS
OR CLAYEY SILTS WITH
SLIGHT PLASTICITY | | | | |---|----|--|--|--|--| | | CL | INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS | | | | | | OL | ORGANIC SILTS
AND ORGANIC SILTY CLAYS
OF LOW PLASTICITY | | | | | SILTS
AND CLAYS
LIQUID LIMIT
(GREATER THAN 50) | мн | INORGANIC SILTS. MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS | | | | | | СН | INORGANIC CLAYS
OF HIGH PLASTICITY,
FAT CLAYS | | | | | | ОН | ORGANIC CLAYS
OF MEDIUM TO HIGH PLASTICITY,
ORGANIC SILTS | | | | | HIGHLY
ORGANIC
SOILS | PT | PEAT,
HUMUS,
SWAMP SOILS
WITH HIGH ORGANIC CONTENTS | | | | PIPE, THREADED, FLUSH-JOINTED. - 2. SCREEN IS 2 IN. I.D. PVC PIPE CONTINUOUS SLOT SCREEN (0.010 IN. SLOT SIZE). - 3. LOWER END OF SCREEN IS CAPPED. - MINIMUM THICKNESS OF BENTONITE PLUG IS 2.0'. - 5. FILTER PACK TO EXTEND 2 FEET OR LESS ABOVE TOP OF SCREEN - CONCRETE WELL APRON WILL EXTEND A MINIMUM OF 3 FEET AND WILL HAVE A MINIMUM THICKNESS OF 4"; CONCRETE WILL BE PLACED TO BELOW THE FROST LINE © 1984 IT CORPORATION ALL COPYRIGHTS RESERVED "NOT TO SCALE" TYPICAL INSTALLATION DETAILS MONITORING WELL NATRIUM CHEMICAL PLANT PREPARED FOR PPG INDUSTRIES, INC. NEW MARTINSVILLE, WEST VIRGINIA INTERNATIONAL TECHNOLOGY CORPORATION 303409-A1 B FIGURE 7 VERIFICATION INVESTIGATION PROJECT SCHEDULE NATRIUM CHEMICAL PLANT NEW MARTINSVILLE, WEST VIRGINIA PREPARED FOR PPG INDUSTRIES, INC. PITTSBURGH, PENNSYLVANIA 1984 IT CORPORATION ALL COPYRIGHTS RESERVED